

Institute of Energy and mechanical named after A. Burkitbayev Department of Power Engineering

EDUCATIONAL PROGRAM

7M07113 – «Electrical Engineering and power engineering» code and title of the educational program

Code and classification of the field of education: 7M07 Engineering,

manufacturing and construction industries

Code and classification of training directions: 7M071 Engineering and

Engineering affairs

Group of educational programs: M099 - Energy and electrical engineering

Level based on NQF: Level 7 Level based on IQF: Level 7

Study period: 2 years
Amount of credits: 120

Educational program 7M07113 «Electrical engineering and power engineering» code and name of educational program

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes №10 dated «06» 03 2025.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes №3 dated <u>«20</u>» 12 2024.

Educational program <u>7M07113 «Electrical engineering and power engineering»</u>

was developed by Academic committee based on direction «Engineering and Engineering»

Full name	Academic Post degree/ academic title		degree/		Place of work	Signature
Teaching staff:						
Sarsenbayev Yerlan	Doctor of Philosophy PhD	Head of the Department, Associate	Kazakh National Research Technical University named after K. I.Satpayev,	Of		
		Professor	NCJS, mobile phone: +77053157262			
Hidolda Yerkin	Candidate of Technical Sciences	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77021120211	Ju		
Employers:						
Abdikalykov Galymzhan		General manager	Lighting Technologies Kazakhstan LLP, mobile phone: +77012252638	day		
Students:						
Danko Igor		3rd year doctoral student	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77053184203	Donal		

Table of contents

- List of abbreviations and designations
- 1 Description of the educational program
- 2 The purpose and objectives of the educational program
- 3 Requirements for the evaluation of the learning outcomes of the educational program
- 4 Passport of the educational program
- 4.1 General information
- 4.2 The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines
- 5 Curriculum of the educational program

List of abbreviations and designations

EP – educational program

BC – basic competencies

PC – professional competencies

LO – learning outcomes

MOOC – massive open online courses

NQF – National Qualifications Framework

IQF – Industry Qualifications Framework

SDG - Sustainable Development Goals

1. Description of the educational program

The professional activity of graduates of the program is directed in the field of electric power, thermal power engineering and electrical engineering.

The direction of the specialty and specialization program covers engineering and engineering.

The purpose of the Master's educational program "Electrical Engineering and Power Engineering" is to train scientific and scientific-pedagogical personnel with relevant professional knowledge and practical skills in the field of electric power industry, capable of solving problems of improving society, economy, production, science and education. The Master of Technical Sciences in the educational program "Electrical Engineering and Power Engineering" must have competencies in accordance with the types of professional activity:

- to search, analyze and process information to solve the set scientific and production tasks;
- demonstrate the ability to plan and conduct experiments, interpret the data obtained and draw conclusions;
- use modern information technologies to solve applied problems;
- to choose analytical and numerical methods in the development of mathematical models of electrical installations and systems, technological processes in the electric power industry;
- demonstrate knowledge for the analysis and synthesis of automatic control systems in the electric power industry;
- demonstrate scientific and mathematical principles of reliability of technical systems;
- know the methods of calculation and selection of power energy converters and conversion equipment;
- choose methods for calculating relay protection devices and analyze the reliability of their operation;
- know the methods of calculation and selection of elements of an automated electric drive;
- use modern systems and methods of electromechanical conversion

The educational program "Electrical Engineering and Power Engineering" provides training for masters in the following activities: Design and engineering activities

- the ability to compose and develop various simulation models and electrical circuits;
- knowledge to carry out technological and electric power calculations, to choose electrical and electromechanical equipment.

Design and technological activities

-the ability to justify the effective operating parameters and indicators of the electric power system;

- knowledge to develop energy-efficient, resource-saving technologies and measures to protect the environment;
- skills to make a business plan for a technological project.

Research activities

- the ability to conduct a literary and patent search;
- ability to plan and conduct research; the ability to analyze and summarize the results of the study;
- skills to make reports and conclusions, publish research results;

Organizational and managerial activities

- the ability to organize the activities of the team, make work plans and set tasks;
- the ability to carry out activities for the organization of production, develop and compile the necessary documentation;
- ability to solve logistical issues and control the execution of tasks.

2. The purpose and objectives of the educational program

The purpose of the Master's educational program "Electrical Engineering and Power Engineering" is to train scientific and scientific-pedagogical personnel with relevant professional knowledge and practical skills in the field of electric power industry, capable of solving problems of improving society, economy, production, science and education.

This goal is implemented in accordance with the UN Sustainable Development Goals, namely:

- **SDG 4 Quality Education:** Adapt learners to the requirements of modern production by developing engineering thinking, digital literacy, and professional skills;
- **SDG 7 Affordable and Clean Energy:** Develop energy-efficient heat exchangers operating on renewable energy sources;
- **SDG 9 Industry, Innovation, and Infrastructure:** Develop innovative solutions in the field of heat engineering, the use of digital technologies, and artificial intelligence;
- **SDG 12 Responsible Consumption and Production:** Ensure sustainable production through the prudent use of materials and the reduction of harmful environmental impacts.

Objective:

1) Compliance with the Sustainable Development Goals:

Master the fundamentals of the design and theory of steam and gas turbines used in the technological chains of thermal power plants and industrial enterprises.

2) Principles of inclusive education:

- Ensuring equal opportunities for all learners (accessible educational resources, adapted teaching methods);
- Creating conditions for interaction between learners of different abilities through the development of teamwork and cooperation.

Tasks of the EP: Based on the achievements of modern science, technology and production, to give knowledge and skills in the field of: - production of electric energy and substations; - electric power networks and systems; - power supply of enterprises; - automated electric drive; - relay protection and automation of electric power systems; - renewable energy. In case of successful completion of the full Master's degree course, the graduate is awarded the academic degree "Master of Technical Sciences in the field of Electric Power Engineering". The Master's degree program "Electrical Engineering and Power Engineering" differs from the existing educational program in the specialty 6M071800 – "Electric Power Engineering" by updating the internal content of the disciplines. The Master's degree program provides for further deepening of the competencies acquired in the bachelor's degree. In this connection, modern innovative disciplines have been introduced into the program:

- -energy management system according to international standards;
- modern high voltage equipment;
- modeling of elements of electric power systems;
- management of the energy complex and regulation of the energy sector;
- theory and practice of technical experiment in EE;
- digital electric drive control systems;
- emergency and technological automation of power systems; special and special automatic control systems in EE.

In the process of mastering the educational program, the Master of Technical Sciences in the field of electric power engineering must acquire the following key competencies:

- to search, analyze and process information to solve the set scientific and production tasks;
- demonstrate the ability to plan and conduct experiments, interpret the data obtained and draw conclusions;
- use modern information technologies to solve applied problems;
- to choose analytical and numerical methods in the development of mathematical models of electrical installations and systems, technological processes in the electric power industry;
- demonstrate knowledge for the analysis and synthesis of automatic control systems in the electric power industry;
- demonstrate scientific and mathematical principles of reliability of technical systems;
- know the methods of calculation and selection of power energy converters and conversion equipment;
- choose methods for calculating relay protection devices and analyze the reliability of their operation;
- know develop plans for the organization of innovative activities at the enterprise;
 - assess innovation and technological risks when introducing new technologies; -

to know the principles of operation and specifics of emergency and technological automation of power systems;

- have practical skills in maintenance, repair and diagnostics of industrial digital electric drive control systems;
- demonstrate the ability to choose and use methods and methods of optimizing power grids;
- possess the ability to install, test, adjust and put into operation electric power and electrical equipment;
- organize and carry out the operation, repair and maintenance of industrial electrical installations;
- know the methods of overvoltage protection, insulation testing methods and operating principles of test installations;
- know the types of high-voltage electrical technologies used;
- be able to use methods of modeling electrical installations and electrical systems.

Obr the ability to compose and develop various simulation models and electrical circuits; - knowledge to carry out technological and electric power calculations, to choose electrical and electromechanical equipment;

Design and technological activities - the ability to justify the effective operating parameters and indicators of the electric power system;

- knowledge to develop energy-efficient, resource-saving technologies and measures to protect the environment;
- skills to make a business plan for a technological project;

Research activities - the ability to conduct a literary and patent search;

- ability to plan and conduct research;
- the ability to analyze and summarize the results of the study;
- skills to make reports and conclusions, publish research results;

Organizational and managerial activities

- the ability to organize the activities of the team, make work plans and set tasks;
- the ability to carry out activities for the organization of production, develop and compile the necessary documentation;
- ability to solve logistical issues and control the execution of tasks.

3. Requirements for the evaluation of the learning outcomes of the educational program

The previous level of education of applicants is higher professional education (bachelor's degree). The applicant must have a diploma of the established sample and confirm the level of knowledge of the English language with a certificate or diplomas of the established sample. The procedure for admission of citizens to the magistracy is established in accordance with the "Standard rules for admission to training in educational organizations implementing educational programs of postgraduate education".

The formation of a contingent of undergraduates is carried out by placing a state educational order for the training of scientific and pedagogical personnel, as well as paying for training at the expense of citizens' own funds and other sources. The State provides citizens of the Republic of Kazakhstan with the right to receive free postgraduate education on a competitive basis in accordance with the state educational order, if they receive education of this level for the first time. At the "entrance", a master's student must have everything.

Special requirements for admission to the program apply to graduates of related educational programs: heat power engineering, automation and management.

Code	Type of	Description of	Competence result	Responsible				
	competence	competence						
		Common						
(Implies full training with possible additional depending on the level of knowledge)								
G1	G1 Communication Fluent monolingual written and communication skil ability of non-fluent communication with second language - Tability to use communicative		Complete 4-year training with the development of at least 240 academic credits (including 120 contact classroom academic credits) with the possible transfer of credits in the second language where	Department of Kazakh and Russian Language, Department of English				
		communication in various situations - there are basics of academic writing in the native language - diagnostic test for language level	students have an advanced level. The language level is determined by passing a diagnostic test					
G2	language level		Complete 4-year training with the development of at least 240 academic credits (including 120 contact classroom academic credits). With a positive diagnostic test, the level of mathematics is 1, with a negative one – the level of algebra and the beginning of analysis	Mathematic al literacy				

	ı			
G3	Basic literacy in	 basic understanding of 	Complete 4-year training	Departments
	natural sciences		with the development of at	in the areas
		world with an	least	of natural
		understanding of the	240 academic credits	sciences
		essence of the basic laws	(including 120 contact	
		of science - understanding	classroom academic	
		of basic hypotheses, laws,	credits). With a positive	
		methods, formulation of	diagnostic test, the level of	
		conclusions and	Physics 1, General	
		estimation of errors	Chemistry, with a negative	
			- the level of the	
			Beginning of physics and	
			the Basic basics of	
			chemistry	
	<u> </u>	SPECIFIC	,	
(implies reduced trai		epending on the level of know	vledge on
	` •	_	es, universities, including hun	•
comp	ciclicies for graduati	•	•	ا ۱۱۵۱۱۱م۱۱م۱۱م۱۱۱م۱۱۱م۱۱۱م۱۱۱م۱۱۱م۱۱
ı		economic area	as)	

economic areas)

S1	Communication - Fluent bilingual oral,		Full credit transfer by	Department		
		written and	language (Kazakh and	of Kazakh		
		communication skills -	Russian)	and Russian		
		ability of non-fluent		Language		
		communication with a				
		third language - skills of				
		writing text of various				
		styles and genres - skills				
		of deep understanding and				
		interpretation of one's own				
		work of a certain level of				
		complexity (essay) - basic				
		aesthetic and theoretical				
		literacy as a condition for				
		fullfledged perception,				
		interpretation of the				
		original text				
S2	Mathematical	- Special mathematical	Transfer of credits in the	Department		
	literacy	thinking using induction	discipline of Mathematics	of		
		and deduction,	(Calculus) I	Mathematic		
		generalization and		S		
		concretization, analysis				
		and synthesis,				
		classification and				
		systematization,				
		abstraction and analogy -				
		the ability to formulate,				
		justify and prove				

		provisions - application of general mathematical concepts, formulas and extended spatial perception for mathematical problems - complete understanding of the basics of mathematical analysis		
S3	Special literacy in natural sciences (Physics, Chemistry, Biology and Geography)	- A broad scientific perception of the world, assuming an understanding of natural phenomena - critical perception for understanding the phenomena of the surrounding world - cognitive abilities to formulate a scientific understanding of the forms of existence of matter, its interaction in nature	Transfer of credits in Physics I, General Chemistry, General Biology, Introduction to Geology, Introduction to Geodesy; Educational practice, etc.	Department s in the areas of natural sciences
S4	English language	- readiness for further selfstudy in English in various fields - readiness to gain experience in project and research work using English	Transfer of English language credits above academic to professional level (up to 15 credits)	Department of English
S5	Computer skills	- Basic programming skills in one modern language - using software and applications to teach various disciplines	Transfer of credits in the discipline Introduction to information and communication technologies, Information and communication technologies	Department of Software Engineering
S6	Sociohumanitarian competencies and behavior	- understanding and awareness of the responsibility of each citizen for the development of the country and the world - the ability to discuss ethical and moral aspects in society, culture and science	Transfer of credits in the Modern history of Kazakhstan (with the exception of the state exam)	Department of Social Disciplines

				_				
		- critical understanding	Transfer of credits in					
		and capacity for polemics	philosophy and other					
		for debating on modern	humanities					
		scientific hypotheses and						
		theories						
		PROFESSIONA	AL					
	implies reduced train	ning due to credit transfer, de	epending on the level of know	wledge on				
· ·		s for graduates of colleges, se						
P1	Professional	Transfer of credits in basic	Graduating					
	competencies	deep understanding of	1 1					
	I	professional competencies	including introduction to	Department				
		at level 5 or 6 - the ability	the specialty, engineering					
		to discuss and polemize	ethics, technology of					
		on professional issues	robotic production,					
		within the framework of	technological automation					
			facilities, theoretical					
		the mastered program						
			foundations of electrical					
			engineering, technological					
			measurements and					
			instruments, mathematical					
			foundations of control					
			theory, electronic					
			automation devices.					
P2	General	- basic general	Transfer of credits in	Graduating				
	engineering	engineering skills and	general engineering	Departmen				
	competencies	knowledge, the ability to	disciplines (engineering					
		solve general engineering	graphics, descriptive					
		tasks and problems - be	geometry, fundamentals					
		able to use application	of electrical engineering,					
		software packages for	fundamentals of					
		processing experimental	microelectronics.)					
		data, solving systems of	ŕ					
		algebraic and differential						
		equations						
P3	Engineering and	- basic skills of using	Transfer of credits in the	Graduating				
-	computer	computer programs and	discipline of computer	Departmen				
	competencies	software systems to solve	graphics, computer					
		general engineering tasks	modeling and					
		Soliciai clighteethig tasks	programming in the					
			MatLab environment.					

P4	Socio-economic	- critical understanding	Transfer of credits in	Graduating
P4	competencies	and cognitive ability to reason on contemporary social and economic issues - basic understanding of the economic assessment of the objects of study and the profitability of	socio-humanitarian and technical-economic disciplines to the credit of the elective cycle	Department
	competencies	reason on contemporary social and economic issues - basic understanding of the economic assessment of the objects of study and	technical-economic disciplines to the cred	

The university may refuse to transfer credits if the low diagnostic level is confirmed or the final grades for completed disciplines were lower than A and B.

4. Passport of the educational program

4.1. General information

№	Field name	Note						
1		7M07 Engineering, manufacturing and construction						
1	education	industries						
2		7M071 Engineering and Engineering affairs						
	areas	/WO/1 Engineering and Engineering arraits						
3	Group of educational programs	M099 Energy and electrical engineering						
4	Name of the educational program	7M07113 - Electrical engineering and power						
'	ivanic of the educational program	engineering						
5	Brief description of the educational	The educational program "Electrical Engineering and						
		Power Engineering" provides training for masters in						
		the following activities:						
		Design and engineering activities						
		- the ability to compose and develop various simulation						
		models and electrical circuits; - knowledge to carry out						
		technological and electric power calculations, to						
		choose electrical and electromechanical equipment;						
		Design and technological activities - the ability to						
		justify the effective operating parameters and						
		indicators of the electric power system;						
		- knowledge to develop energy-efficient, resource						
		saving technologies and measures to protect the						
		environment;						
		- skills to make a business plan for a technological						
		project;						
		Research activities - the ability to conduct a						
		literary and patent search;						
		- ability to plan and conduct research;						
		- the ability to analyze and summarize the results of the						
		study;						

		- skills to make reports and conclusions, publish
		research results;
		· ·
		- Organizational and managerial activities - the ability
		to organize the activities of the team, make work plans
		and set tasks;
		- the ability to carry out activities for the organization
		of production, develop and compile the necessary
		documentation;
		- ability to solve logistical issues and control the
		execution of tasks
6	Purpose of the OP	The purpose of the Master's educational program
		"Electrical Engineering and Power Engineering" is to
		train scientific and scientificpedagogical personnel
		with relevant professional knowledge and practical
		skills in the field of electric power industry, capable of
		solving problems of improving society, economy,
		production, science and education.
		This goal is implemented in accordance with the
		UN Sustainable Development Goals, namely:
		- SDG 4 – Quality Education: To adapt learners
		to the requirements of modern production by
		developing engineering thinking, digital literacy and
		professional skills;
		- SDG 7 – Affordable and Clean Energy: Design
		of heat exchangers that use energy efficiently and can
		work with renewable energy sources;
		- SDG 9 – Industry, Innovation and
		Infrastructure: Design innovative solutions in the field
		of heating technology, use of digital technologies and
		artificial intelligence;
		- SDG 12 – Responsible Consumption and
		Production: Ensure sustainable production through the
		economical use of materials and reducing harmful
		impacts on the environment.
		Objective:
		1) Compliance with the Sustainable
		Development Goals:
		Master the fundamentals of the design and
		theory of steam and gas turbines used in the
		technological chains of thermal power plants and
		industrial enterprises.
		2) Principles of inclusive education:
		- Ensuring equal opportunities for all learners
		(accessible educational resources, adapted teaching
		methods);
		- Creating conditions for interaction between
		learners of different abilities through the development
		of teamwork and cooperation.
7	Type of EP	New
8	The level of the NRK	7 level
9	ORC Level	7 level
10	Distinctive features of the EP	No
	·	1

11	List of competencies of the	B – basic knowledge, skills and abilities				
	educational program:	B1 is capable of philosophical analysis of social				
	Program	phenomena, personality behavior and other				
		phenomena. I am ready to conduct a philosophical				
		assessment of social phenomena;				
		B2 – to know and put into practice the basics of				
		engineering professional ethics;				
		B3 – be able to analyze the current problems of the				
		modern history of Kazakhstan.				
		P – professional competencies				
		P1 – a wide range of theoretical and practical knowledge in the professional field;				
		P2 –is able to analyze electrical circuit diagrams				
		and wiring diagrams of electric power systems. P3 – ready to install, adjust and operate				
		electromechanical and electrical systems;				
		P4 – ready to participate in the development and				
		design of new facilities of traditional and alternative				
		energy.				
		O – universal, social and ethical competencies				
		O1 – is able to use English fluently as a means of				
		business communication, a source of new knowledge				
		in the field of electrical engineering and energy. I am				
		ready to use English in my professional activity in the				
		field of electric power industry;				
		O2 – is able to speak Kazakh (Russian) fluently as				
		a means of business communication, a source of new				
		knowledge in the field of electrical engineering and				
		energy. I am ready to use Kazakh (Russian) language				
		in my professional activity in the field of electric power				
		industry;				
		O3 – to know and apply in work and life the basics				
		of applied ethics and ethics of business communication;				
		O4 – know and apply the basic concepts of				
		professional ethics;				
		O5 – to know and solve the problems of human				
		influence on the environment.				
		C – special and managerial competencies				
		C1- independent management and control of the				
		processes of labor and educational activities within the				
		framework of the strategy, policy and goals of the				
		organization, discussion of problems, reasoning				
		conclusions and competent information management;				
		C2 –to be a specialist in conducting experimental				
		studies of electric power facilities;				
		C3 –to be a researcher on the study of modern				
		electromechanical and electrical systems;				
12	Learning outcomes of the educational	The graduate of this educational program is awarded				
	program:	the academic degree "Master" Master of Technical				
ļ	Program.	Sciences in the direction. A graduate who has mastered				
		master's degree programs must have the following				
		master s degree programs must have the following				

general professional competencies:

To possess extensive knowledge and skills in the field of renewable energy sources, contributing to the development of affordable and clean energy. To know solar, wind, wave, geothermal, and hydroelectric power plants, their operating principles, and maintenance, focusing on enhancing the resilience of energy systems and reducing carbon emissions.

Possess knowledge of the main pedagogical trends of our time. Be able to conduct a dialogue with students, basic teaching skills, elements of psychology.

To apply a scientific approach to studying the problems of the energy sector, solving issues of power supply and providing electricity to remote settlements through renewable energy sources, contributing to the development of sustainable cities and towns, improving the quality of life, and ensuring access to clean energy.

Apply knowledge of the main philosophical directions - from ancient Chinese and Greek philosophical schools to modern schools of philosophy, the presence of a technical, philosophical outlook on life in addition to a technical one.

Demonstrate professional knowledge of the English language, with high technical level negotiation skills using technical terminology

Possess knowledge in the field of management of the energy complex and regulation of the energy sector

Demonstrate knowledge in the field of development of electric power systems and automation and management of technical and technological systems using modern methods and tools for management, control and analysis

Possess knowledge in the field of power electronics, automation of processes in them.

Be able to work with electric power systems and networks, automatic control devices and relay protection, power supply systems for facilities and industries

Know microprocessor technologies and equipment relay protection

Demonstrate knowledge of international and domestic standards, prospects for the technical development of the energy sector, principles of operation, technical characteristics, design features of the used electric power plants and systems, advanced foreign experience in the field of electric power industry

Use knowledge and skills of working with various types of electric transport, electrical facilities of

		industrial enterprises, low and high voltage factory electrical equipment, electrical installations, electrical networks of enterprises, organizations and institutions
13	Form of training	Daytime
14	Duration of training	2 years
15	Volume of loans	120
16	Languages of instruction	Russian
17	Academic degree awarded	Master of Technical Sciences
18	Developer(s) and authors:	Sarsenbaev Y.A., Khidolda Y.

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

			Number	Gener	ated lea	rning o	utcomes	(codes)							
				LO1	LO2	LO3	LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
No	Name of the discipline	Brief description of the discipline	credits												
1	Foreign language	The course is designed for undergraduates of technical	3					v							
	(professional)	specialties to improve and develop foreign language													
		communication skills in professional and academic fields. The													
		course introduces students to the general principles of													
		professional and academic intercultural oral and written													
		communication using modern pedagogical													
		technologies.public discussions; interpret and present the													
		results of scientific research in a foreign language.							1						_
2	History and philosophy	The subject of philosophy of science, dynamics of science,					V								
	of science	specifics of science, science and pre-science, antiquity and the													
		formation of theoretical science, the main stages of the													
		historical development of science, features of classical													
		science, non-classical and post-non-classical science,													
		philosophy of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of													
		science, social and moral responsibility of a scientist and													
		engineer.													
2	Higher school nedagogy	Undergraduates will master the methodological and	2		17		14								
3	ringher school pedagogy	theoretical foundations of higher school pedagogy, plan and			v		v								
		organize the processes of teaching and upbringing, master the													
		communicative technologies of subject-subject interaction													
		between a teacher and a master in the educational process of a													
		university.													
4	Psychology of	The discipline studies the modern role and content of	3		v		v								
	management	psychological aspects in managerial activity. The													
		improvement of the psychological literacy of the student in the													
		process of implementing professional activities is considered.													
		Self-improvement in the field of psychology and studying the													
		composition and structure of management activities, both at													

		Number Generated learning outcomes (codes)													
				LO1	LO2	LO3	LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
№	Name of the discipline	Brief description of the discipline	credits												
		the local level and abroad. The psychological feature of													
		modern managers is considered.													
5		Purpose: the goal is to train specialists who can effectively				V				v				V	
	research	manage rights to the results of intellectual activity in the field													
		of science, as well as ensure their legal protection and commercialization. Contents: analysis of legal protection of													
		research and development results, methods of													
		commercialization of scientific inventions, ethical and legal													
		aspects of scientific activity in the context of IP.													
6	Modeling of elements of	Physical processes in energy systems. Mathematical models	5							v		v		v	
	electric power systems	of the basic elements of the energy system. Modeling elements													
		of the electrical system in the MatLab software environment.													
7	Reliability in power	The basic methods to ensure and improve reliability;	5							v		v		v	
	industry	methods for evaluating the reliability of components,													
		maintenance and restoration of health and life of power													
		equipment; methods of engineering calculation of reliability													
		of complex systems and forecasting reliability of electric													
		power systems; methods for testing the reliability of the systems													
Q	Optimal and adaptive	The formulation of optimal control problems and methods	5							17		14		17	
0	control systems	for its solution, adaptive systems and methods for controlling	3							V		v		v	
	control systems	adaptive systems, the synthesis of optimal and extremal													
		systems.													
9	Specific and special	Mathematical devices and methods used in the study of	5							v		v		v	
	automatic control	automatic control systems. Analysis of the processes in non-													
	systems in the power	linear, discrete, stahosticheskih systems and delay systems,													
	industry	and variable parameters.													
10	Project Management	Purpose: Studying the principles of project management	5						v						
		using modern business technologies Contents: The course													
		studies the components of project management based on													
		modern behavioral models of project-oriented business													
		development management. The program is based on international standards PMI PMBOK, IPMA ICB and RK													
		international standards Pivil Pivibok, IPivia ICB and KK													

			Number Generated learning outcomes (codes)												
					LO2		LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
No	Name of the discipline	Brief description of the discipline	credits												
		standards in the field of project management. The features of organizational management of business development through the interaction of strategic, project and operational management are studied													
11		The goal is to develop deep knowledge and competencies in the development and implementation of sustainable development strategies at various levels. The content covers a wide range of topics, ranging from global environmental challenges such as climate change, biodiversity loss and natural resource depletion, to socio-economic aspects including inequality, health and education.	5			V						v			V
12	The theory of automated electric drive	Fundamentals of electric drive mechanics. Electromechanical properties of DC motors. Electromechanical properties of DC motors. Electromechanical properties of AC motors. Transients in electric drives. The choice of engines power.	5							V		v		V	
13	The theory of electromechanical energy conversion	Fundamentals of electric drive mechanics: equations of motion, reduction of moments and moments of inertia to the motor shaft. Energy conversion systems for direct and alternating current. Static and dynamic properties of systems with electromechanical energy conversion. Transient processes in electromechanical systems. Calculation and choice of power.	5							V		v		v	v
14	Renewable energy sources	In the process of studying the discipline, students should understand the concept of providing consumers with electricity, understand the structure of the electric power industry, the relationship between its various links, have an idea of the latest achievements in obtaining renewable energy sources, get an idea of the composition of electricity consumers in various industries. The discipline focuses the knowledge gained in chemistry, biology, physics, theoretical foundations of electrical engineering on the practical problems of the electric power industry, shows their connection with special disciplines, processes and	5	v		v				v					

			Number Generated learning outcomes (codes)												
			of	LO1	LO2	LO3	LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
№	Name of the discipline	Brief description of the discipline	credits												
		technologies for obtaining renewable energy sources from													
		the appropriate materials used.													
15		The discipline addresses three groups of major problems	5							v		V		V	
	problems of power	related to meeting the growing demand for energy: a shortage													
	industry	of energy and energy, an increasing burden on the environment, geopolitical and social threats.													
16	Power electronics	Uncontrolled rectifiers: the main circuit parameters and	5							v		v			
10	Power electronics	ratios. Controlled rectifiers: regulation principles, main	3							V	V	V			
		characteristics, reversible circuits, control methods (separate													
		joint), modes of operation: rectifier and inverter, thyristor													
		protection against switching overvoltage. Regulators AC													
		voltage: single-phase, three-phase, adjusting the													
		characteristics of different regulators. Switching Regulators													
		voltage Types pulse width modulation, the application													
		controllers. Frequency converter with direct connection and													
		the intermediate DC link. Application of frequency													
1.7		converters.	5												
17	Theory and practice of	Expansion of ideas about the possibilities of RH; Fixing and concretization of theoretical material concerning the	3									V	V		
	relay protection	principles of operation and arrangement of RH, their basic													
		properties, application techniques; Gaining skills in													
		calculating the parameters necessary for setting up the RH;													
		Correct choice of methods and means of RH; Assessment of													
		the effectiveness and reliability of the selected RH.													
		Formation of clear ideas about the principle of the operation													
		of RH devices, allowing them to participate in their													
		development, works on installation and commissioning,													
		servicing of RH equipment					<u> </u>								
18	*	The main objective of the discipline is to form a master's	5							V		V		V	
	of the modes of power	degree of knowledge about the optimization of energy													
	supply systems	systems, energy conversion, energy audits and energy-audit facilities, energy-saving technologies.													
		nacinucs, energy-saving technologies.]		1						1			

			Number Generated learning outcomes (codes)												
				LO1	LO2	LO3	LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
	*	Brief description of the discipline	credits												
19	High-voltage electrical technologies and equipment	High-voltage electrical technologies based on the use of strong electric and magnetic fields. Plasma gas discharge. Design of insulating structures for high-voltage electrical and electro-technological equipment. Features of the development of discharges in technological installations. Powerful pulse current sources, high voltage generators. The main electrotechnological high voltage equipment.	5			v								v	V
20	Monitoring and energy audit of power complexes	To prepare a specialist to solve the problems of design, research and operation of electric power and electrotechnical installations and systems, able to analyze the efficiency of energy conversion schemes, assess the prospects of new methods of energy production and introduce innovative developments into practice.	5						V	V		V			
21	Installation, commissioning and operation of eletrical equipment	The discipline introduces the organization and execution of works on installation, commissioning and operation of power installations, automated electric drive and automation systems for industrial plants and complexes	5							v		V		V	
22	Design of industrial electric drives	Fundamentals of electric drive mechanics: equations of motion, reduction of moments and moments of inertia to the motor shaft. Determining the actual states of the object, synthesizing its structure, choosing the right criterion for managing the object, synthesizing the structure of the control system, evaluating the advantages of the selected structure, predicting the behavior of the synthesized control, signaling and regulation system, evaluating the advantages and disadvantages of the system.	5							V		V		V	
23	Energy management system according to international standards	The discipline studies the basics of energy management of enterprises. Framework for energy management, regulations, and requirements of the enterprise from the point of view of normative documents. The procedure for the implementation of energy management.	5						V	v					
24	Modern high voltage equipments	During the study of the discipline provides basic information about the calculation of electric fields, the nature of the	5			v				v	v	v	_		

			Number Generated learning outcomes (codes)												
				LO1	LO2	LO3	LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
No	Name of the discipline	1 1	credits												
		breakdown of dielectrics, the design features of high-voltage													
		insulation, the mechanisms of defects in the insulation and													
		methods of its control, overvoltage and methods of protection													
		against them.													
25	-	The general equations of control objects. Identification	5							v		V		v	
		(definition of the structure and parameters of the													
	the power industry	mathematical model) static (linear and nonlinear)													
		characteristics and dynamic performance in the form of the													
		transfer function as a result of accelerating the processing													
		characteristics of the objects (in a step exposure at the													
		entrance) exponential, S-shaped and vibrational forms (active													
		experiment). Study on experimental method of identifying													
		frequency characteristics. Determination of the transfer													
		function of stochastic control objects on the basis of the													
		solution of the integral equation Wiener-Hopf different													
2 -		methods (passive experiment).	_												
26	Digital control systems	The concepts and mathematical foundations of discrete	5								v			V	
	of electric drives	control systems. Mathematical analysis of digital control													
		systems. Microprocessor control of electric tools. The													
		principle of the state variables measuring devices													
		(coordinate) in electric drives with digital control. Design of													
27	0 4: 01 4:	digital control of electric systems.	5												1
27		Proper planning and execution of preventive maintenance,	3							V		V		V	
	-	planning and calculation of the number of spare parts, as well													
	networks	as ways to improve operational reliability.													

NON-PROFIT JOINT STOCK COMPANY "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.I. SATBAYEV"

«APPROVED»
Decision of the Academic Council
NPJSC«KazNRTU
named after K.Satbayev»
dated 06.03.2025 Minutes № 10

Allocation of face-to-face training based on

WORKING CURRICULUM

Academic year 2025-2026 (Spring, Autumn)

Group of educational programs M099 - "Energy and electrical engineering"

Educational program 7M07113 - "Electrical engineering and power engineering"

The awarded academic degree Master of Technical Sciences

Form and duration of study full time (scientific and pedagogical track) - 2 years

Discipline				Total	Total	lek/lab/pr	in hours	Form of	Allocatio	on of face-to- courses an	d semesters	based on	
code	Name of disciplines	Block	Cycle	ECTS credits	hours	Contact hours	SIS (including TSIS)	control	1 co	ourse	2 co	urse	Prerequisites
				credits		nours	1515)		1 sem	2 sem	3 sem	4 sem	
	C	YCLE	OF GE	NERAL I	EDUCAT	TION DIS	CIPLINES (GI	ED)		•	•	•	
			CYCI	LE OF BA	ASIC DI	SCIPLINE	ES (BD)						
	M-1. Moo	lule of	basic tr	aining (u	ıniversit	y compone	ent, componen	t of choice))				
HUM212	History and philosophy of science		BD, UC	3	90	15/0/15	60	Е	3				
HUM213	Higher school pedagogy		BD, UC	3	90	15/0/15	60	Е	3				
LNG213	Foreign language (professional)		BD, UC	3	90	0/0/30	60	Е		3			
HUM214	Psychology of management		BD, UC	3	90	15/0/15	60	Е		3			
ERG222	Specific and special automatic control systems in the power industry	1	BD, CCH	5	150	30/15/0	105	Е		5			ERG166
ERG221	Optimal and adaptive control systems	1	BD, CCH	5	150	30/15/0	105	Е		5			
MNG781	Intellectual property and research	1	BD, CCH	5	150	30/0/15	105	Е		5			
ERG273	The theory of automated electric drive	2	BD, CCH	5	150	30/15/0	105	Е		5			
ERG272	The theory of electromechanical energy conversion	2	BD, CCH	5	150	30/0/15	105	Е		5			
MNG782	Sustainable development strategies	2	BD, CCH	5	150	30/0/15	105	Е		5			
ERG218	Reliability in power industry	1	BD, CCH	5	150	30/0/15	105	Е			5		
MNG704	Project Management	1	BD, CCH	5	150	30/0/15	105	Е			5		
ERG214	Modeling of elements of electric power systems	1	BD, CCH	5	150	30/15/0	105	Е			5		
			N	И-3. Prac	tice-orie	ented mod	ule						
AAP273	Pedagogical practice		BD, UC	8				R			8		
			CYCLI	E OF PRO	OFILE I	DISCIPLIN	NES (PD)				•	•	•
	M-2. Module of professi	onal ac	tivity i	n electric	enginee	ring (univ	ersity compon	ent, compo	nent of ch	oice)			
ERG269	Renewable energy sources		PD, UC	5	150	30/0/15	105	Е	5				
ERG252	Power electronics		PD, UC	5	150	30/15/0	105	Е	5				
ERG239	Digital control systems of electric drives	1	PD, CCH	5	150	30/15/0	105	Е	5				
ERG203	ASDC and optimization of the modes of power supply systems	1	PD, CCH	5	150	15/15/15	105	E	5				
ERG217	Installation, commissioning and operation of eletrical equipment	2	PD, CCH	5	150	30/15/0	105	E	5				
ERG241	Operation of electric power systems and networks	2	PD, CCH	5	150	30/15/0	105	E	5				
							<u> </u>						

ERG233	Theory and practice of relay protection		PD, UC	5	150	30/0/15	105	E		5			
ERG265	Scientific and technical problems of power industry		PD, UC	5	150	30/0/15	105	Е		5			
ERG228	Design of industrial electric drives	1	PD, CCH	5	150	30/0/15	105	Е			5		
ERG260	Theory and practice of technical experiment in the power industry	1	PD, CCH	5	150	30/0/15	105	Е			5		
ERG206	High-voltage electrical technologies and equipment	2	PD, CCH	5	150	30/0/15	105	Е			5		
ERG246	Modern high voltage equipments	2	PD, CCH	5	150	30/0/15	105	Е			5		
ERG247	Energy management system according to international standards	3	PD, CCH	5	150	15/15/15	105	Е			5		
ERG256	Monitoring and energy audit of power complexes	3	PD, CCH	5	150	30/0/15	105	Е			5		
			N	I-3. Prac	tice-orie	nted mod	ule						
AAP269	Research practice		PD, UC	8				R				8	
			M-4	l. Experi	mental r	esearch m	odule						
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R	4				
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R		4			
AAP251	Research work of a master's student, including internship and completion of a master's thesis		RWMS	2				R			2		
AAP255	Research work of a master's student, including internship and completion of a master's thesis		RWMS	14				R				14	
			M	I-5. Modu	ıle of fin	al attestat	ion						
ECA212	ECA212 Registration and protection of the master thesis FA 8												
Total based on UNIVERSITY:												30	
	iotai bastu on	. 511111							6	60	6	0	

Number of credits for the entire period of study

Cycle code	Cycles of disciplines		Credits	_	
Cycle code	Cycles of disciplines	Required component (RC)	University component (UC)	Component of choice (CCH)	Total
GED	Cycle of general education disciplines	0	0	0	0
BD	Cycle of basic disciplines	0	20	15	35
PD	Cycle of profile disciplines	0	28	25	53
	Total for theoretical training:	0	48	40	88
RWMS	Research Work of Master's Student				24
ERWMS	Experimental Research Work of Master's Student				0
FA	Final attestation				8
	TOTAL:				120

 $Decision \ of \ the \ Educational \ and \ Methodological \ Council \ of \ KazNRTU \ named \ after \ K. Satpayev. \ Minutes \ \textit{N}\underline{\tiny{0}}\ 3 \ dated \ 20.12.2024$

Decision of the Academic Council of the Institute. Minutes $\, {\rm N}\!_{\rm 2} \, {\rm 3} \,$ dated 19.12.2024

Signed:

Governing Board member - Vice-Rector for Academic Affairs

Uskenbayeva R. K.

Approved:

Vice Provost on academic development

Kalpeyeva Z. Б.

Head of Department - Department of Educational Program Management and Academic-Methodological Work

Zhumagaliyeva A. S.

Director of the Institute - A.Burkitbaev Institute of Energy and Mechanical Engineering

Yelemesov K..

Department Chair - Power Engineering

Sarsenbayev Y. .

Representative of the Academic Committee from Employers
_____Acknowledged_____

Abdykalykov G. Y.

